Improvement silage nutritive and hygienic value using viable lactic acid bacteria inoculant

J. Jatkauskas, V. Vrotniakiene
Lithuanian University of Health Sciences
Lithuania

Supported by Josera GmbH & Co.KG, Deutschland/Germany
Introduction

Feed preservation:
1. To inhibit the growth of undesirable micro-organisms, to minimize nutrient and energy losses and to prevent the spoilage of the feedstuffs during storage.
2. LAB are commonly used:
 a) to achieve a rapid pH drop through organic acid production and to minimize nutrient and energy losses during fermentation,
 b) to improve aerobic stability during feed out, by inhibiting moulds and yeasts. (Feeds that have undergone aerobic deterioration have reduced nutritional value and present hazards to the animals and environment).
The objective:

To investigate the effects of adding two different LAB blends to perennial ryegrass on
1. Fermentation variables
2. Microbial composition
3. Aerobic stability
of the resulting silage at day 90 and at day 49 after ensiling *in vitro* set-up with mini silo’s.
Materials and methods:

Perennial rye grass (at early-boot stage) wilted (dry matter range: 31.8 %), chopped to about 2.0 cm length. 3 liter mini-silo.

A randomized complete block design, with 5 replicates per additive/forage combination.

C - no additive;
T1 - (L. buchneri, L. plantarum, P. acidilactici, 300 000 cfu/g forage);
T2 - (L. buchneri, L. plantarum, 300 000 cfu/g forage);

Analyses: Forages and silages chemical and microbial composition (pH, DM, CP, WSC, nitrate, buffer capacity, VFA and lactic acid, NH₃-N and alcohols, stock of LAB, yeasts and mold, aerobic stability).
Materials and methods:

<table>
<thead>
<tr>
<th>Objective</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scope of test</td>
<td>5 Ensiling tests (replicates)</td>
<td>5 Ensiling tests (replicates)</td>
</tr>
<tr>
<td>Bulk density</td>
<td>90 days</td>
<td>49 days</td>
</tr>
<tr>
<td></td>
<td>1 kg/5 litre</td>
<td>0.6 kg/5 litre</td>
</tr>
<tr>
<td>Test conditions and test criteria</td>
<td>Fermentation quality</td>
<td>Fermentation quality</td>
</tr>
<tr>
<td></td>
<td>DM loss</td>
<td>DM loss</td>
</tr>
<tr>
<td></td>
<td>pH value at day 3 of ensiling</td>
<td>pH value at day 3 of ensiling</td>
</tr>
<tr>
<td></td>
<td>pH value at day 90 of ensiling</td>
<td>pH value at day 49 of ensiling</td>
</tr>
<tr>
<td></td>
<td>Aerobic stability</td>
<td>Aerobic stability</td>
</tr>
<tr>
<td></td>
<td>1 day air stress at day 28 and at day 42 of ensiling</td>
<td>1 day air stress at day 28 and at day 42 of ensiling</td>
</tr>
<tr>
<td></td>
<td>Fermentation quality</td>
<td>Fermentation quality</td>
</tr>
<tr>
<td></td>
<td>DM loss</td>
<td>DM loss</td>
</tr>
<tr>
<td></td>
<td>pH value at day 3 of ensiling</td>
<td>pH value at day 3 of ensiling</td>
</tr>
<tr>
<td></td>
<td>pH value at day 49 of ensiling</td>
<td>pH value at day 49 of ensiling</td>
</tr>
<tr>
<td></td>
<td>Aerobic stability</td>
<td>Aerobic stability</td>
</tr>
</tbody>
</table>

DLG Guidelines, 2000
Results
Acidification level

pH after 3 d

- O1: a, c, b
- O2: a, c, b

pH at fermentation end

- O1: a, c, b
- O2: a, c, b

pH after AST

- O1: a, b, b
- O2: a, b, c
Fermentation profile

Lactic acid, g/kg DM
- O1: Group c > a > b
- O2: Group b > a = a

Acetic acid, g/kg DM
- O1: Group a < c < b
- O2: Group a < a = a

Butyric acid, g/kg DM
- O1: Group a = b > b
- O2: Group a < b < c

Legend:
- C
- T1
- T2
Fermentation profile

NH₃-N, g/kg DM

<table>
<thead>
<tr>
<th>O1</th>
<th>O2</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>a</td>
</tr>
<tr>
<td>T1</td>
<td>c</td>
</tr>
<tr>
<td>T2</td>
<td>b</td>
</tr>
</tbody>
</table>

Ethanol, g/kg DM

<table>
<thead>
<tr>
<th>O1</th>
<th>O2</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>a</td>
</tr>
<tr>
<td>T1</td>
<td>c</td>
</tr>
<tr>
<td>T2</td>
<td>b</td>
</tr>
</tbody>
</table>
DM losses

DM corr., g/kg

- O1: b, a, a
- O2: c, a, b

DM loss, g/kg

- O1: a, b, b
- O2: a, c, b
Aerobic stability

![Graph showing aerobic stability over exposure time for conditions O1 and O2.](image)

- **O1**:
 - Ambient, °C
 - Ambient, +3°C
 - C
 - T1
 - T2

- **O2**:
 - Ambient, °C
 - Ambient, +3°C
 - C
 - T1
 - T2

Aerobic stability, h

- O1: c, b, a
- O2: b, a, a
Microbial characteristics

Yeast, \log_{10} cfu/g

- O1: a, b, b
- O2: a, b, c

Moulds, \log_{10} cfu/g

- O1: a, b, b
- O2: a, b, c
Conclusion

Overall, it can be concluded that application of viable homo and hetero LAB blends *L.buchneri, L.plantarum, P.acidilactici* (T1) and *L.buchneri, L.plantarum* (T2) did succeed in altering the quality of perennial ryegrass silage ensiled in laboratory silos (in both Objective 1 and Objective 2). Inoculation:

a) increased fermentation rate and resulted in lower pH;

b) changed fermentation profile produced more lactate and less ammonia-N, alcohols, and butyric acid and reduced DM loss;

c) were effective in limiting the degradation of protein, lowering growth of moulds and enhancing silage aerobic stability.
Thank you for your attention