Nitrogen use efficiency (NUE_N) of dairy cows under intensive grazing

20 June, Cindy Klootwijk

Components of Amazing Grazing

Feed supplementation → Grass intake → Grass supply → Grass growth → Soil

Cow behaviour
Challenges intensive grazing vs NUE$_N$

- Dutch dairy sector
 - > cows per grazing area
 - High demand for grazing
 - Focus on improving NUE$_N$

- Limited knowledge on grass (N) intake
- High level of feed supplementation
Grazing systems for intensive grazing

- Higher grassland utilization
- More equal distribution of manure
Objective:
To test the effects of intensive grazing systems and dietary protein level on NUE$_N$ at cow level
2 x 2 factorial design

<table>
<thead>
<tr>
<th>Grazing system</th>
<th>Protein level</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SG Low RDP</td>
</tr>
<tr>
<td>CCG</td>
<td>Low RDP</td>
</tr>
</tbody>
</table>

- **RDP = rumen degradable protein**
 - Contrast of 500 g RDP cow\(^{-1}\) day\(^{-1}\)

5 kg concentrates with sugar beet pulp (-50) or rapeseed meal (+50)
Dairy Campus, Leeuwarden (NL)
2 x 2 factorial design

- April – October 2016 + 2017
- 8 ha: 7.5 cow per ha
- Daytime grazing

- 4 groups of 15 dairy cows (HF)
 - Before start: 38.8 kg FPCM cow\(^{-1}\) day\(^{-1}\)
 - At start: 175 (115-247) days in lactation
 - 2.6 (1-7) lactations
Quantifying inputs and outputs

- 60 individual dairy cows
- Subset: July + September 2016

NUE\textsubscript{N} = \frac{N \text{ milk}}{N \text{ feed}}

N digestibility = \frac{N \text{ feed} - N \text{ faeces}}{N \text{ feed}}
Quantifying inputs and outputs

Marker technique: n-alkane
(Mayes et al., 1986)

Automated registration

Fresh grass Maize Concentrates

Faeces Milk
Quantifying inputs and outputs

- Grass samples: daily at 09:00
- Manure samples: twice a day after milking
- Milk samples: 4 consecutive milkings
Results NUE_N: SG vs CCG

- July: SG < CCG (37% vs 39%; $P=0.003$)
 - due to higher grass (N) intake

- Sept.: No difference SG and CCG ($P=0.723$)
 - due to lower grass RDP content

SG: 4.2 kg DM cow$^{-1}$ day$^{-1}$
CCG: 3.6 kg DM cow$^{-1}$ day$^{-1}$
Results NUE_N: high vs low RDP

- High RDP < low RDP (35% vs 41%; $P<0.001$)
 - due to higher concentrate N intake
 - despite higher milk output: 30 vs 26 kg cow$^{-1}$ day$^{-1}$
Results N digestibility

Increase in dietary N

Fresh grass

Concentrates

Milk

Faeces

Urine
Low N digestibility

- Absolute RDP levels
 - Low RDP was very low (-300)
 - High RDP was ‘normal’ (+200)

- Shortage N on rumen level
 - Low NH₃ in rumen: <3 mmol/L
 - Low milk urea: 10 mg/dl

→ N digestibility grass?
Conclusions

- SG slightly higher grass intake compared to CCG
 - Grass N digestibility?

- Increase in feed N
 - Increase in urine N
 - Increase in N digestibility
 - Decrease in NUE_N

- High faeces N; low urine N \rightarrow environmental impact
To be continued..

- Further analyses
 - Tested with higher N level in 2017
 - NUE_N at farm level
Amazing Grazing!!!

Amazing Grazing is funded by:

- ZuivelNL
- Duurzame Zuivelketen
- LTO Nederland
- NZO

Partners in Amazing Grazing:

- Wageningen University & Research
- DAIRY Campus
- Louis Bolk Instituut
- Kennis Transfer Centrum

Amazing Grazing is realised in cooperation with:

- Provincie Fryslân
- Feed4Foodure
- Op naar Precisielandbouw 2.0
- Ruwvoer & Bodem
N inputs / outputs / efficiency parameters

<table>
<thead>
<tr>
<th>Treatment groups</th>
<th>GS</th>
<th>RDP</th>
<th>GS*RDP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total feed in kg DM cow(^{-1}) day(^{-1})</td>
<td>J</td>
<td>19.3</td>
<td>18.3</td>
</tr>
<tr>
<td></td>
<td>S</td>
<td>18.9</td>
<td>18.0</td>
</tr>
<tr>
<td>Total feed N in g cow(^{-1}) day(^{-1})</td>
<td>J</td>
<td>472</td>
<td>354</td>
</tr>
<tr>
<td></td>
<td>S</td>
<td>447</td>
<td>360</td>
</tr>
<tr>
<td>Grass in kg DM cow(^{-1}) day(^{-1})</td>
<td>J</td>
<td>4.1</td>
<td>4.2</td>
</tr>
<tr>
<td></td>
<td>S</td>
<td>2.8</td>
<td>3.4</td>
</tr>
<tr>
<td>Grass N in g cow(^{-1}) day(^{-1})</td>
<td>J</td>
<td>140</td>
<td>132</td>
</tr>
<tr>
<td></td>
<td>S</td>
<td>113</td>
<td>139</td>
</tr>
<tr>
<td>Milk in kg cow(^{-1}) day(^{-1})</td>
<td>J</td>
<td>30.8</td>
<td>25.8</td>
</tr>
<tr>
<td></td>
<td>S</td>
<td>28.9</td>
<td>25.2</td>
</tr>
<tr>
<td>Milk N in g cow(^{-1}) day(^{-1})</td>
<td>J</td>
<td>170</td>
<td>148</td>
</tr>
<tr>
<td></td>
<td>S</td>
<td>150</td>
<td>144</td>
</tr>
<tr>
<td>Faecal N in g cow(^{-1}) day(^{-1})</td>
<td>J</td>
<td>162</td>
<td>152</td>
</tr>
<tr>
<td></td>
<td>S</td>
<td>136</td>
<td>148</td>
</tr>
<tr>
<td>Urine N in g cow(^{-1}) day(^{-1})</td>
<td>J</td>
<td>140</td>
<td>54</td>
</tr>
<tr>
<td></td>
<td>S</td>
<td>159</td>
<td>68</td>
</tr>
<tr>
<td>NUE(_N) in %</td>
<td>J</td>
<td>36</td>
<td>42</td>
</tr>
<tr>
<td></td>
<td>S</td>
<td>34</td>
<td>40</td>
</tr>
<tr>
<td>N digestibility(^6) in %</td>
<td>J</td>
<td>66</td>
<td>57</td>
</tr>
<tr>
<td></td>
<td>S</td>
<td>69</td>
<td>58</td>
</tr>
</tbody>
</table>
Compared to an efficient Dutch cow

Jan Dijkstra, 2013

<table>
<thead>
<tr>
<th></th>
<th>Efficient cow</th>
<th>Low RDP</th>
<th>High RDP</th>
</tr>
</thead>
<tbody>
<tr>
<td>N feed</td>
<td>461</td>
<td>360</td>
<td>463</td>
</tr>
<tr>
<td>N faeces</td>
<td>89</td>
<td>143</td>
<td>148</td>
</tr>
<tr>
<td>N urine</td>
<td>174</td>
<td>73</td>
<td>156</td>
</tr>
<tr>
<td>N milk</td>
<td>198</td>
<td>144</td>
<td>159</td>
</tr>
<tr>
<td>NUE_N %</td>
<td>43</td>
<td>40</td>
<td>34</td>
</tr>
<tr>
<td>N digestibility %</td>
<td>81</td>
<td>61</td>
<td>68</td>
</tr>
</tbody>
</table>

- High average NUE_N: 37%
 - Low N feed input
- Low average digestibility: 64%
 - High N faeces
 - Low N urine