Effects of different feeding systems on milk composition and processability:
Outdoor grazing on pasture vs. indoors feeding on TMR

European Grassland Federation, Cork
June 18, 2018

Arunima Gulati
Teagasc Food Research Centre, Moorepark
Feeding Systems

Profiling milk from Grass: Comparative effects of different dairy cow feeding systems on milk composition, processability and product manufacture

Characteristics of Pasture based feeding systems

- Natural environment
- Cost competitive
- Lower enteric emissions
- Inclusion of white clover fixes atmospheric Nitrogen

Characteristics of Indoor feeding offered TMR

- Protection from heat/cold stress
- Consistent feed composition
- Higher milk yield

- 20 Holstein-Friesian cows allocated to each of the three herds: GRS, GRC and TMR
- Herds balanced: breed, lactation no., calving date, and pre-experimental milk yield and milk solids yield.
Teagasc study on Pasture vs. TMR feeding systems

GRS Milk GRC Milk TMR Milk

Compositional/sensory properties
- Composition
- Protein and element profiling
- Fatty acid profiles
- Volatile compounds
- Flavour

Processability characteristics
- Heat stability
- Rennet gelation

Product forming characteristics

Cheese
- Cheddar
- Maasdamer

Mozzarella

Powders
- SMP, WMP

Composition
- Biochemistry
- Yield/losses
- Texture
- Functionality
- Volatiles
- Sensory

Application
Results

- Milk composition / physico-chemical characteristics
- Rennet Gelation & Mozzarella cheesemaking characteristics
Effect of feeding system: Composition

- **GRS milk**:
 - highest mean levels of total solids (TS), protein, casein ($P < 0.05$)

- **TMR milk**:
 - Highest content of lactose ($P < 0.05$)

- **GRC milk**
 - Intermediate of GRS and TMR for mean TS, protein, casein, lactose content. But had highest proportion of α_{s2}-casein.

- **No difference** between GRS, GRC or TMR milk for:
 - mean levels of whey protein, NPN or Urea
 - mean level of serum casein as % of total casein ($3.7 – 6.25 \%$)
 - mean proportions of α_{s1}, β- or κ-caseins
Effect of feeding system: Milk Elements

- **GRS milk** had higher concentrations of Ca, P and Na than GRC or TMR milk ($P < 0.05$)

- **GRC milk** had lowest levels of Se, Cu and Zn

- **TMR milk** had highest level of Se, Cu and Zn
Results

- Milk composition / physico-chemical characteristics
- Rennet Gelation & Mozzarella cheesemaking characteristics
Effect of feeding system: rennet gelation and cheese manufacture

Rennet Gelation: Prerequisite in cheese making

Rennet addition

Gel strength at 40 min, G'_40 (Pa)

Days in lactation, DIL

Rennet gelation of **GRS** milk superior to that of **TMR** milk

- Higher gel-firming rate ($\delta G'/\delta t$) : $P < 0.05$
- higher gel firmness at 40 min, G'_40 : $P < 0.05$
Effect of feeding system: cheese manufacture

- **Cheese yield** from **GRS** milk or **GRC** milk was significantly higher than that of **TMR**

<table>
<thead>
<tr>
<th>Item</th>
<th>Mid Lactation</th>
<th>Late Lactation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>GRS</td>
<td>GRC</td>
</tr>
<tr>
<td>Actual yield, Ya (kg/100 kg milk)</td>
<td>9.3b</td>
<td>9.7a</td>
</tr>
</tbody>
</table>

- **No effect** on cheese composition or recoveries of fat and protein from milk to cheese, or characteristics over ripening, proteolysis, water binding capacity, firmness, cohesiveness, chewiness,…

- Cheese from **GRS** milk or **GRC** milk significantly ‘**yellower**’ than cheese from (GRS and GRC cheeses: higher b^* colour coordinate).

- In mid-lactation, cheese from **GRS** milk had highest mean flow and loss tangent over storage time. This effect was not observed in late lactation.
Conclusion

- Milk from cows grazed outdoors on pasture differed from milk from cows offered TMR indoors in several respects
- Compared to TMR milk, pasture-based milk was characterized by
 - high concentrations of protein, casein, Ca, P
 - lower content of Se, Cu or Zn
 - stronger rennet gelation
 - higher Mozzarella cheese yield
 - ‘yellower’ cheese
- The type of pasture affected the extent of difference between pasture- and TMR-based feeding systems
Acknowledgement

Prof. Tim Guinee
Dr. Mark A. Fenelon
Dr. Jennifer J. McManus
Dr. Deirdre Hennessey
Dr. Eva Lewis
Dr. Michael O’Donovan
Norann Galvin
Catherine Mullins
Jimmy Flynn
Anne Marie McAuliffe
Sarah Cooney
Teagasc Farm Staff
Moorepark Technology Ltd. Staff

Thank You