A meta-analysis on the impacts of climate change on the yield of European pastures

Martha Dellar
Kairsty Topp, Georgios Banos, Eileen Wall
Climate change in Europe

Changes from 1971–2000 to 2071–2100 (RCP4.5)
Climate change in Europe

Global atmospheric CO$_2$ concentration: 421 – 936 ppm by 2100
How do changes in atmospheric CO$_2$, temperature and water availability affect the yield of:

- pastures in different regions?
- different plant types?
Objective

Analyse the expected changes in pasture yield under elevated CO$_2$, elevated temperature and changes in water availability

- Shrubs
- Forbs
- Legumes
- Grasses
Meta-analysis

Finding studies

• Web of Science
• Grey literature
• Other meta-analyses
• Review articles

Criteria for inclusion

• In Europe or else laboratory conditions
• Common European forage species
• Plant above ground dry weight data under applied climatic change
• Inc. mean, sd (or equivalent) and sample size
Summary of studies used

<table>
<thead>
<tr>
<th>Treatment</th>
<th>No. studies</th>
<th>No. observations</th>
<th>Average difference from control</th>
<th>Average duration (days)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elevated CO₂</td>
<td>58</td>
<td>248</td>
<td>+289ppm</td>
<td>475</td>
</tr>
<tr>
<td>Elevated Temp.</td>
<td>34</td>
<td>178</td>
<td>+3.3°C</td>
<td>418</td>
</tr>
<tr>
<td>Elevated Water</td>
<td>7</td>
<td>29</td>
<td>76% more water than control</td>
<td>189</td>
</tr>
<tr>
<td>Reduced Water</td>
<td>43</td>
<td>207</td>
<td>81% less water than control</td>
<td>70</td>
</tr>
</tbody>
</table>

Almost exclusively C3 perennial species
Data analysis

Fixed and mixed effects models

Fixed effects included:

- Location
- Treatment conditions
- Methodology
- Management practices
- Plant types

Random effect: study ID (when significant)

Bayesian implementation using MCMC simulations
Yield change by region

Reduced water

Elevated water
Alpine, Continental and Atlantic:
+57.1 ±19.9%
Yield change by region

Change in AGDW (%)

Elevated temperature

Alpine/Northern Atlantic Continental

Alpine Atlantic Continental
Northern Southern
Yield change by plant type

Elevated CO$_2$

Elevated temperature
Combinations of climatic changes

↑C: Elevated CO₂
↑ T: Elevated temperature
↓ W: Reduced water availability
↑ W: Elevated water availability
Summary

• Northern and Alpine regions can expect improved yields
• Continental and southern Europe can expect decreased yields
• Different plant types respond in different ways leading to possible changes in pasture composition
Possible adaptation options

• Increase inputs
 – Concentrates
 – Water
 – Fertiliser

• Increase system robustness
 – Multi-species swards
 – Breed more resilient animals
 – Switch to hardier animal breeds or species
Acknowledgements
Leading the way in Agriculture and Rural Research, Education and Consulting